Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS Pathog ; 19(8): e1011572, 2023 08.
Article in English | MEDLINE | ID: mdl-37607182

ABSTRACT

Pathogen life history theory assumes a positive relationship between pathogen load in host tissues and pathogen transmission. Empirical evidence for this relationship is surprisingly rare due to the difficulty of measuring transmission for many pathogens. The comparative method, where a common host is experimentally infected with a set of pathogen strains, is a powerful approach for investigating the relationships between pathogen load and transmission. The validity of such experimental estimates of strain-specific transmission is greatly enhanced if they can predict the pathogen population strain structure in nature. Borrelia burgdorferi is a multi-strain, tick-borne spirochete that causes Lyme disease in North America. This study used 11 field-collected strains of B. burgdorferi, a rodent host (Mus musculus, C3H/HeJ) and its tick vector (Ixodes scapularis) to determine the relationship between pathogen load in host tissues and lifetime host-to-tick transmission (HTT). Mice were experimentally infected via tick bite with 1 of 11 strains. Lifetime HTT was measured by infesting mice with I. scapularis larval ticks on 3 separate occasions. The prevalence and abundance of the strains in the mouse tissues and the ticks were determined by qPCR. We used published databases to obtain estimates of the frequencies of these strains in wild I. scapularis tick populations. Spirochete loads in ticks and lifetime HTT varied significantly among the 11 strains of B. burgdorferi. Strains with higher spirochete loads in the host tissues were more likely to infect feeding larval ticks, which molted into nymphal ticks that had a higher probability of B. burgdorferi infection (i.e., higher HTT). Our laboratory-based estimates of lifetime HTT were predictive of the frequencies of these strains in wild I. scapularis populations. For B. burgdorferi, the strains that establish high abundance in host tissues and that have high lifetime transmission are the strains that are most common in nature.


Subject(s)
Borrelia burgdorferi , Ixodes , Lyme Disease , Animals , Mice , Mice, Inbred C3H , Larva
2.
Ticks Tick Borne Dis ; 13(6): 102058, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36288683

ABSTRACT

Lyme borreliosis is caused by the spirochete Borrelia burgdorferi and is transmitted among vertebrate hosts by Ixodes scapularis ticks in eastern North America. Treatment with topical corticosteroids increases the abundance of B. burgdorferi in the skin of lab mice that have been experimentally infected via needle inoculation. In the present study, female and male C3H/HeJ mice were infected with B. burgdorferi via nymphal tick bite. Infected mice were treated with clobetasol on the skin of the right hindleg on days 35 and 36 post-infection and euthanized at days -2, 1, 3, 5, and 7 post-treatment; a group of control mice was infected but not treated with clobetasol. The spirochete abundance was quantified in 8 mouse tissues including bladder, heart, left hindleg skin, right hindleg skin, dorsal skin, ventral skin, left ear and right ear. Averaged across the 8 mouse tissues, the abundance of B. burgdorferi on days 3 and 5 were 21.4x and 14.4x higher in mice treated with clobetasol compared to the untreated control mice, but there were large differences among tissues. There was a dramatic sex-specific effect of the clobetasol treatment; the peak abundance of B. burgdorferi in the skin (left hindleg, right hindleg, dorsal, ventral) was 72.6x higher in male mice compared to female mice. In contrast, there was little difference between the sexes in the tissue spirochete load in the ears, bladder, and heart. Topical application of clobetasol could increase the sensitivity of direct diagnostic methods (e.g., culture, PCR) to detect B. burgdorferi in host skin biopsies.

3.
Mol Ecol ; 31(22): 5872-5888, 2022 11.
Article in English | MEDLINE | ID: mdl-36112076

ABSTRACT

Experimental infections with different pathogen strains give insight into pathogen life history traits. The purpose of the present study was to compare variation in tissue infection prevalence and spirochete abundance among strains of Borrelia burgdorferi in a rodent host (Mus musculus, C3H/HeJ). Male and female mice were experimentally infected via tick bite with one of 12 strains. Ear tissue biopsies were taken at days 29, 59 and 89 postinfection, and seven tissues were collected at necropsy. The presence and abundance of spirochetes in the mouse tissues were measured by quantitative polymerase chain reaction. To determine the frequencies of our strains in nature, their multilocus sequence types were matched to published data sets. For the infected mice, 56.6% of the tissues were infected with B. burgdorferi. The mean spirochete load in the mouse necropsy tissues varied 4.8-fold between the strains. The mean spirochete load in the ear tissue biopsies decreased rapidly over time for some strains. The percentage of infected tissues in male mice (65.4%) was significantly higher compared to female mice (50.5%). The mean spirochete load in the seven tissues was 1.5× higher in male mice compared to female mice; this male bias was 15.3× higher in the ventral skin. Across the 11 strains, the mean spirochete loads in the infected mouse tissues were positively correlated with the strain-specific frequencies in their tick vector populations. The study suggests that laboratory-based estimates of pathogen abundance in host tissues can predict the strain composition of this important tick-borne pathogen in nature.


Subject(s)
Borrelia burgdorferi Group , Borrelia burgdorferi , Ixodes , Lyme Disease , Ticks , Male , Female , Mice , Animals , Borrelia burgdorferi/genetics , Lyme Disease/epidemiology , Lyme Disease/veterinary , Rodentia , Prevalence , Mice, Inbred C3H
4.
PLoS One ; 17(1): e0262229, 2022.
Article in English | MEDLINE | ID: mdl-35061805

ABSTRACT

Borrelia burgdorferi and Borrelia miyamotoi are tick-vectored zoonotic pathogens maintained in wildlife species. Tick populations are establishing in new areas globally in response to climate change and other factors. New Brunswick is a Canadian maritime province at the advancing front of tick population establishment and has seen increasing numbers of ticks carrying B. burgdorferi, and more recently B. miyamotoi. Further, it is part of a region of Atlantic Canada with wildlife species composition differing from much of continental North America and little information exists as to the presence and frequency of infection of Borrelia spp. in wildlife in this region. We used a citizen science approach to collect a wide range of animals including migratory birds, medium-sized mammals, and small mammals. In total we tested 339 animals representing 20 species for the presence of B. burgdorferi and B. miyamotoi. We have developed new nested PCR primers and a protocol with excellent specificity for detecting both of these Borrelia species, both single and double infections, in tissues and organs of various wildlife species. The positive animals were primarily small non-migratory mammals, approximately twice as many were infected with B. burgdorferi than B. miyamotoi and one animal was found infected with both. In addition to established reservoir species, the jumping mouse (Napaeozapus insignis) was found frequently infected; this species had the highest infection prevalence for both B. burgdorferi and B. miyamotoi and has not previously been identified as an important carrier for either Borrelia species. Comprehensive testing of tissues found that all instances of B. burgdorferi infection were limited to one tissue within the host, whereas two of the five B. miyamotoi infections were diffuse and found in multiple systems. In the one coinfected specimen, two fetuses were also recovered and found infected with B. miyamotoi. This presumptive transplacental transmission suggests that vertical transmission in mammals is possible. This finding implies that B. miyamotoi could rapidly spread into wildlife populations, as well as having potential human health implications.


Subject(s)
Animals, Wild/microbiology , Borrelia burgdorferi/isolation & purification , Borrelia/isolation & purification , Animals , Birds/microbiology , Borrelia/classification , Borrelia/genetics , Borrelia burgdorferi/classification , Borrelia burgdorferi/genetics , Canada/epidemiology , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , DNA, Bacterial/metabolism , Disease Vectors , Fetus/microbiology , Lyme Disease/diagnosis , Lyme Disease/epidemiology , Lyme Disease/veterinary , Mice , Phylogeny , Polymerase Chain Reaction
5.
J Wildl Dis ; 57(3): 678-682, 2021 07 01.
Article in English | MEDLINE | ID: mdl-33956091

ABSTRACT

Borrelia burgdorferi and Borrelia miyamotoi are tickborne zoonotic pathogens in Canada. Both bacteria are vectored by ticks, Ixodes scapularis in Atlantic Canada, but require wildlife reservoir species to maintain the bacteria for retransmission to future generations of ticks. Coyotes (Canis latrans) are opportunistic feeders, resulting in frequent contact with other animals and with ticks. Because coyotes are closely related to domestic dogs (Canis lupus familiaris), it is probable that coyote susceptibility to Borrelia infection is similar to that of dogs. We collected livers and kidneys of eastern coyotes from licensed harvesters in Nova Scotia, Canada, and tested them using nested PCR for the presence of B. burgdorferi, B. miyamotoi, and Dirofilaria immitis. Blood obtained from coyote livers was also tested serologically for antibodies to B. burgdorferi, Ehrlichia canis, Anaplasma phagocytophilum, and D. immitis. Borrelia burgdorferi and D. immitis were detected by both nested PCR and serology tests. Seroreactivity to A. phagocytophilum was also found. Borrelia miyamotoi and E. canis were not detected. Our results show that coyotes in Nova Scotia have been exposed to a number of vectorborne pathogens.


Subject(s)
Anaplasma phagocytophilum , Anaplasmosis , Borrelia burgdorferi , Coyotes , Dirofilaria immitis , Dirofilariasis , Dog Diseases , Ehrlichiosis , Lyme Disease , Anaplasma , Animals , Antibodies, Bacterial , Borrelia , Dog Diseases/epidemiology , Dogs , Ehrlichia canis , Ehrlichiosis/epidemiology , Ehrlichiosis/veterinary , Lyme Disease/epidemiology , Lyme Disease/veterinary , Nova Scotia/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL
...